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Abstract Based upon Ben-Tal’s generalized algebraic operations, new classes of functions,
namely (h, ϕ)-type-I, quasi (h, ϕ)-type-I, and pseudo (h, ϕ)-type-I, are defined for a multi-
objective programming problem. Sufficient optimality conditions are obtained for a feasible
solution to be a Pareto efficient solution for this problem. Some duality results are estab-
lished by utilizing the above defined classes of functions, considering the concept of a Pareto
efficient solution.
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1 Introduction

It is well known that the convexity notion plays an vital role in many aspects of mathemat-
ical programming including sufficient optimality conditions and duality theorems. During
the past decades, Generalized convex functions received more attention. Various generaliza-
tions of convex functions have appeared in literature. More specifically, Hanson and Mond
[1] defined the class of type-I functions. With and without differentiability, the type-I func-
tions were extended to some classes of generalized type-I functions by many researchers,
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and sufficient optimality criteria and duality results are obtained for the multiple objective
programming problems involving these functions (see [2–9]).

In the literatures [10,11], Ben-Tal introduced certain generalized operations of addition
and multiplication. With the help of Ben-Tal’s generalized algebraic operations, a meaning-
ful generalization of convex functions is the introduction of (h, ϕ)-convex functions, which
was given by Avriel [10]. Some basic properties of (h, ϕ)-convex functions are discussed by
Ben-tal [11]. Xu and Liu [12,13] established Kuhn-Tucher necessary optimality conditions
for (h, ϕ)-mathematical programming problem. Zhang [14] considered the sufficiency and
duality of solutions for nonsmooth (h, ϕ)-semi-infinite programming.

Our purpose in present paper is to introduce the notions of type-I and generalized type-I
functions for a multi-objective differentiable programming problem in the setting of Ben-
Tal’s generalized algebraic operations. We derive some Karush-Kuhn-Tucker type of suffi-
cient optimality conditions and duality theorems for a Pareto efficient solution to the problem
involving the new classes of type-I and generalized type-I functions. This paper is divided
into four sections. Section 2 includes preliminaries and related results which will be used in
later sections. Sections 3 and 4 are devoted to establishing sufficient conditions of optimality
and duality theorems, respectively.

2 Preliminaries and related results

Let Rn be the n-dimensional Euclidean space and R be the set of all real numbers. Throughout
this paper, the following convention for vectors in Rn will be followed:

x > y if and only if xi > yi, i = 1, 2, . . . , n,

x � y if and only if xi � yi, i = 1, 2, . . . , n,

x ≥ y if and only if xi � yi, i = 1, 2, . . . , n, but x �= y.

Now, let us recall generalized operations of addition and multiplication introduced by
Ben-Tal in Ref. [10].

(1) Let h be an n vector-valued continuous function, defined on Rn and possessing an
inverse function h−1. Define the h-vector addition of x, y ∈ Rn as

x ⊕ y = h−1(h(x) + h(y)
)
, (2.1)

and the h-scalar multiplication of x ∈ Rn and λ ∈ R as

λ ⊗ x = h−1(λh(x)
)
. (2.2)

(2) Let ϕ be real-valued continuous function, defined on R and possessing an inverse func-
tion ϕ−1. Then the ϕ-addition of two numbers, α ∈ R and β ∈ R, is given by

α[+]β = ϕ−1(ϕ(α) + ϕ(β)
)
, (2.3)

and the ϕ-scalar multiplication of α ∈ R and λ ∈ R as

λ[·]α = ϕ−1(λϕ(α)
)
. (2.4)

(3) The (h, ϕ)-inner product of vector x, y ∈ Rn is defined as

(xT y)h,ϕ = ϕ−1(h(x)T h(y)
)
. (2.5)
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Denote
m⊕

i=1

xi = x1 ⊕ x2 ⊕ · · · ⊕ xm, xi ∈ Rn, i = 1, 2, . . . , m, (2.6)

[ m∑

i=1

]
αi = α1[+]α2[+] · · · [+]αm, αi ∈ R, i = 1, 2, . . . , m, (2.7)

x � y = x ⊕ (−1) ⊗ y, x, y ∈ Rn, (2.8)

α[−]β = α[+]((−1)[·]β), α, β ∈ R. (2.9)

By Ben-Tal’s generalized algebraic operations, it is easy to obtain the following conclusions:

ϕ(λ[·]α) = λϕ(α), (2.10)

α[−]β = ϕ−1(ϕ(α) − ϕ(β)
)
, (2.11)

h(λ ⊗ x) = λh(x). (2.12)

Under the above generalized means, (h, ϕ)-convex functions can be written as

λ[·]f (x1)[+](1 − λ)[·]f (x2) � f
(
λ ⊗ x1 ⊕ (1 − λ) ⊗ x2).

Avriel [10] introduced the following concept, which plays an important role in our paper.

Definition 2.1 Let f be a real-valued function defined on Rn, denote f̂ (t) = ϕ
(
f (h−1(t))

)
,

t ∈ Rn. For simplicity, write f̂ (t) = ϕf h−1(t). The function f is said to be (h, ϕ)-dif-
ferentiable at x ∈ Rn, if f̂ (t) is differentiable at t = h(x), and denoted by ∇∗f (x) =
h−1

(∇f̂ (t) |t=h(x)

)
. In addition, It is said that f is (h, ϕ)-differentiable on X ⊂ Rn if it is

(h, ϕ)-differentiable at each x ∈ X. A vector-valued function is called (h, ϕ)-differentiable
on X ⊂ Rn if each of its components is (h, ϕ)-differentiable at each x ∈ X.

The most important feature of (h, ϕ)-convex functions is that they are convex transform-
able. In other words, they can be transformed into convex functions, as we shall see in the
next example.

Example 1 Let f (x) = log x. This is a well-known concave function, defined on C = {x ∈
R : x > 0}. However, log x is (h, ϕ)-convex with h(t) = t and ϕ(α) = eα .

If f is a differentiable at x, then f is (h, ϕ)-differentiable at x. We obtain this fact by
setting h and ϕ are identity functions, respectively. However, the converse is not true. Let us
see next example.

Example 2 Let f (x) = √|x − 1| be a function defined on R. It is clear that f is not dif-
ferentiable at x = 1, but f is (h, ϕ)-differentiable at x = 1, where h(t) = t , ϕ(α) = α3,
α ∈ R.

We collect some properties of Ben-Tal’s generalized algebraic operations and (h, ϕ)-
differentiable functions from literature [12], which will be used in the squeal.
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Lemma 2.1 Suppose that f, fi are real-valued functions defined on Rn, for i = 1, 2, . . . , m,
and (h, ϕ)-differentiable at x̄ ∈ Rn. Then, the following statements hold:

(1)
m⊕

i=1
λi ⊗ xi = h−1

( m∑

i=1
λih(xi)

)
, xi ∈ Rn, λi ∈ R for i = 1, 2, . . . , m.

(2)
[ m∑

i=1

]
µi[·]αi = ϕ−1

( m∑

i=1
µiϕ(αi)

)
, µi, αi ∈ R for i = 1, 2, . . . , m.

(3) ∇∗(λ[·]f (x̄)) = λ ⊗ ∇∗f (x̄), for λ ∈ R.

(4) ∇∗
([ m∑

i=1

]
λi[·]fi(x̄)

)
=

m⊕

i=1
λi ⊗ ∇∗fi(x̄), for λi ∈ R, i = 1, 2, . . . , m.

We need more properties of Ben-Tal generalized algebraic operations.

Lemma 2.2 Let i = 1, 2, . . . , m. The following statements hold:

(1) λ[·](µ[·]α) = µ[·](λ[·]α) = λµ[·]α, for λ,µ, α ∈ R;

(2) λ[·]
[ m∑

i=1

]
αi =

[ m∑

i=1

]
λ[·]αi , for λ, αi ∈ R;

(3) λ[·](α[−]β) = λ[·]α[−]λ[·]β, for λ, α, β ∈ R;

(4)
[ m∑

i=1

]
(αi[−]βi) =

[ m∑

i=1

]
αi[−]

[ m∑

i=1

]
βi , for αi, βi ∈ R;

(5)
(( m⊕

i=1
xi

)T
y
)

h,ϕ
=

[ m∑

i=1

]
(xT

i y)h,ϕ , for xi, y ∈ Rn;

(6) ((λ ⊗ x)T y)h,ϕ = λ[·](xT y)h,ϕ , for x, y ∈ Rn, λ ∈ R;

(7)
(( m⊕

i=1
λi ⊗ xi

)T
y
)

h,ϕ
=

[ m∑

i=1

]
λi[·](xT

i y)h,ϕ , for xi, y ∈ Rn, λi ∈ R.

Proof

(1). It is easy to obtain this fact from (2.4).
(2). We have

[ m∑

i=1

]
λ[·]αi = ϕ−1

(
λ

m∑

i=1

ϕ(αi)
)

by Lemma 2.1 (2)

= ϕ−1

(

λϕ

(

ϕ−1

(
m∑

i=1

ϕ(αi)

)))

= λ[·]ϕ−1
( m∑

i=1

ϕ(αi)
)

by (2.4)

= λ[·]
[ m∑

i=1

]
αi by (2.3) and (2.7)

(3). We have

λ[·](α[−]β) = λ[·](α[+](−1)[·]β)
by (2.9)

= λ[·]α[+](−1)[·](λ[·]β)
by (i) and (ii)

= λ[·]α[−]λ[·]β by (2.9)
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(4). We can see that

[ m∑

i=1

]
(αi[−]βi) =

[ m∑

i=1

]
ϕ−1(ϕ(αi) − ϕ(βi)

)
by (2.11)

= ϕ−1
( m∑

i=1

ϕ
(
ϕ−1(ϕ(αi) − ϕ(βi)

)))
by Lemma 2.1 (2)

= ϕ−1
( m∑

i=1

ϕ(αi) −
m∑

i=1

ϕ(αi)
)

= ϕ−1
(
ϕ
(
ϕ−1

( m∑

i=1

ϕ(αi)
))

− ϕ
(
ϕ−1

( m∑

i=1

ϕ(αi)
)))

= ϕ−1
(
ϕ
([ m∑

i=1

]
αi

)
− ϕ

([ m∑

i=1

]
βi

))
by Lemma 2.1 (2)

=
[ m∑

i=1

]
αi[−]

[ m∑

i=1

]
βi by (2.11)

(5). We can see that

(( m⊕

i=1

xi

)T

y
)

h,ϕ
= ϕ−1

((
h
( m⊕

i=1

xi

))T

h(y)
)

by (2.5)

= ϕ−1
( m∑

i=1

h(xi)
T h(y)

)
by Lemma 2.1 (1)

= ϕ−1
( m∑

i=1

ϕ
(
(xT

i y)h,ϕ

))
by (2.5)

=
[ m∑

i=1

]
(xT

i y)h,ϕ by Lemma 2.1 (2)

(6). We have

((λ ⊗ x)T y)h,ϕ = ϕ−1(h(λ ⊗ x)T h(y)
)

by (2.5)

= ϕ−1(λh(x)T h(y)
)

by (2.12)

= ϕ−1(λϕ(ϕ−1(h(x)T h(y)))
)

= λ[·]ϕ−1(h(x)T h(y)) by (2.4)

= λ[·](xT y)h,ϕ by (2.5)

(7). This is a direct consequence of (5) and (6).

Lemma 2.3 Suppose that function ϕ, appears in Ben-Tal’s generalized algebraic operations,
is strictly monotone with ϕ(0) = 0. Then, the following statements hold:

(a) Let λ � 0, λ, α, β ∈ R and α � β. Then λ[·]α � λ[·]β;
(b) Let λ > 0, λ, α, β ∈ R and α < β. Then λ[·]α < λ[·]β;
(c) Let λ < 0, λ, α, β ∈ R and α � β. Then λ[·]α � λ[·]β;
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(d) Let x, y ∈ Rm, and x � y. Then
[ m∑

i=1

]
xi �

[ m∑

i=1

]
yi;

(e) Let x, y ∈ Rm, and x ≤ y. Then
[ m∑

i=1

]
xi <

[ m∑

i=1

]
yi;

Proof We only prove (a) and (e), because the proofs of (b)–(c) and (d) are similar to those
of (a) and (e), respectively. Without loss of generality, we suppose that ϕ is strictly monotone
increasing on R.

(a). Since λ � 0, we have that

α � β ⇒ ϕ(α) � ϕ(β)

⇒ λϕ(α) � λϕ(β) ⇒ ϕ−1(λϕ(α)
)

� ϕ−1(λϕ(β)
) = λ[·]α � λ[·]β.

(e). Since x ≤ y, there exists at least an index k such that

xk < yk

xi � yi for all i �= k.

Hence

ϕ(xk) < ϕ(yk)

ϕ(xi) � ϕ(yi) for all i �= k.

Consequently,

m∑

i=1

ϕ(xi) <

m∑

i=1

ϕ(yi).

Since ϕ is strictly monotone increasing, we get

ϕ−1
( m∑

i=1

ϕ(xi)
)

< ϕ−1
( m∑

i=1

ϕ(yi)
)
.

It yields from Lemma 2.1 (2) that
[ m∑

i=1

]
xi <

[ m∑

i=1

]
yi .

Lemma 2.4 Suppose that ϕ is a continuous one-to-one strictly monotone and onto function
with ϕ(0) = 0. Let α, β ∈ R. Then α < β if and only if α[−]β < 0.

Proof Without loss of generality, we assume that ϕ is strictly monotone increasing on R.
By the given conditions, we can see that

α[−]β < 0 ⇔ ϕ−1(
ϕ(α) − ϕ(β)

)
< ϕ−1(0) ⇔ ϕ(α) − ϕ(β) < 0 ⇔ ϕ(α) < ϕ(β) ⇔ α < β.

Throughout of the rest of this paper, we further assume that h is a continuous one-to-one
and onto function with h(0) = 0. Similarly, suppose that ϕ is a continuous one-to-one strictly
monotone and onto function with ϕ(0) = 0. Under the above assumptions, it is clear that
(0T x)h,ϕ = (xT 0)h,ϕ = 0 for any x ∈ Rn, and 0[·]α = 0 for any α ∈ R.
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Consider the following multi-objective programming problem:

(MOP)h,ϕ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min f (x) = (f1(x), f2(x), . . . , fm(x))T

s.t. g(x) � 0,

x ∈ X ⊂ Rn,

where f : X → Rm, g : X → Rp are (h, ϕ)-differentiable. Let F denote the feasible
solutions of (MOP)h,ϕ , assumed to be nonempty, that is,

F = {x ∈ X : g(x) � 0}.
�

Definition 2.1 A point x̄ is said to be a Pareto efficient solution for (MOP)h,ϕ if x̄ ∈ F and
f (x) � f (x̄) for all x ∈ F .

Definition 2.2 (fi, gj ), i = 1, 2, . . . , m and j = 1, 2, . . . , p, is said to be (h, ϕ)-type I with
respect to η at x̄ ∈ X, if there exists vector-function η: X×X → Rn such that for all x ∈ X,

fi(x)[−]fi(x̄) �
((∇∗fi(x̄)

)T
η(x, x̄)

)

h,ϕ
, (2.13)

and

(−1)[·]gj (x̄) �
((∇∗gj (x̄)

)T
η(x, x̄)

)

h,ϕ
.

Definition 2.3 (fi, gj ), i = 1, 2, . . . , m and j = 1, 2, . . . , p, is said to be quasi (h, ϕ)-type
I with respect to η at x̄ ∈ X, if there exists vector-function η: X × X → Rn such that for all
x ∈ X,

[ m∑

i=1

]
fi(x) �

[ m∑

i=1

]
fi(x̄) ⇒

[ m∑

i=1

]((∇∗fi(x̄)
)T

η(x, x̄)
)

h,ϕ
� 0,

and

(−1)[·]
[ p∑

j=1

]
gj (x̄) � 0 ⇒

[ p∑

j=1

]((∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
� 0.

Definition 2.4 (fi, gj ), i = 1, 2, . . . , m and j = 1, 2, . . . , p, is said to be pseudo (h, ϕ)-
type I with respect to η at x̄ ∈ X, if there exists vector-function η: X × X → Rn such that
for all x ∈ X,

[ m∑

i=1

]((∇∗fi(x̄)
)T

η(x, x̄)
)

h,ϕ
� 0 ⇒

[ m∑

i=1

]
fi(x) �

[ m∑

i=1

]
fi(x̄),

and

[ p∑

j=1

]((∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
� 0 ⇒ (−1)[·]

[ p∑

j=1

]
gj (x̄) � 0.
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Definition 2.5 (fi, gj ), i = 1, 2, . . . , m and j = 1, 2, . . . , p, is said to be quasi pseudo
(h, ϕ)-type I with respect to η at x̄ ∈ X, if there exists vector-function η: X × X → Rn

such that for all x ∈ X,

[ m∑

i=1

]
fi(x) �

[ m∑

i=1

]
fi(x̄) ⇒

[ m∑

i=1

]((∇∗fi(x̄)
)T

η(x, x̄)
)

h,ϕ
� 0,

and

[ p∑

j=1

]((∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
� 0 ⇒ (−1)[·]

[ p∑

j=1

]
gj (x̄) � 0.

Definition 2.6 (fi, gj ), i = 1, 2, . . . , m and j = 1, 2, . . . , p, is said to be pseudo quasi
(h, ϕ)-type I with respect to η at x̄ ∈ X, if there exists vector-function η: X × X → Rn

such that for all x ∈ X,

[ m∑

i=1

]((∇∗fi(x̄)
)T

η(x, x̄)
)

h,ϕ
� 0 ⇒

[ m∑

i=1

]
fi(x) �

[ m∑

i=1

]
fi(x̄),

and

(−1)[·]
[ p∑

j=1

]
gj (x̄) � 0 ⇒

[ p∑

j=1

]((∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
� 0.

Let h, ϕ be identity functions in the above Definition 2.2–2.6, then, (h, ϕ)-type I, quasi
(h, ϕ)-type I, pseudo (h, ϕ)-type I, quasi pseudo (h, ϕ)-type I and pseudo quasi (h, ϕ)-type I
are exactly ’similar’ to the concepts of type I, quasi-type I, pseudo-type I, quasipseudo-type
I and pesudoquasi-type I (see Definition 2.1–2.5 of Ref. [4]), respectively. Now, we give an
example of (h, ϕ)-type I functions.

Example 3 The functions f : (0, 1] → R2, f (x) = (
f1(x), f2(x)

) = (
cos2(x),− sin2(x)

)
,

and g : (0, 1] → R defined by g(x) = log x. Let h(t) = t and ϕ(α) = arctan(α). Then, (f, g)

is (h, ϕ)-type I with respect to η(x, x̄) = 0 at x̄ = 1. In fact, observing that ϕ−1(α) = tan(α)

and h(0) = 0, ϕ(0) = ϕ−1(0) = 0, In this case, we have

f1(x)[−]f1(1) = cos2(x)[−] cos2(1) = tan
(

arctan(cos2(x)) − arctan(cos2(1))
)

= cos2(x) − cos2(1)

1 + cos2(x) cos2(1)

� 0 =
((∇∗f1(1)

)T 0
)

h,ϕ

=
((∇∗f1(1)

)T
η(x, 1)

)

h,ϕ
, ∀x ∈ (0, 1],

f2(x)[−]f2(1)=( − sin2(x)
)[−](− sin2(1)

) = tan
(

arctan(− sin2(x)) − arctan(− sin2(1))
)

= − sin2(x) − ( − sin2(1)
)

1 + sin2(x) sin2(1)

� 0 =
((∇∗f2(1)

)T 0
)

h,ϕ

=
((∇∗f2(1)

)T
η(x, 1)

)

h,ϕ
, ∀x ∈ (0, 1].
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and

(−1)[·]g(1) = tan
( − arctan(log 1)

)
� 0 =

((∇∗g(1)
)T 0

)

h,ϕ

=
((∇∗g(1)

)T
η(x, 1)

)

h,ϕ
, ∀x ∈ (0, 1].

By Definition 2.2, we have shown that (fi, g), i = 1, 2, is (x, arctan x)-type I with respect
to η = 0 at x̄ = 1.

The following example shows that some functions which are not type I at some point can
be transformed into (h, ϕ)-type I.

Example 4 The functions f : (0,∞) → R2 defined by f (x) = (f1(x), f2(x)) = (|x −
1|,√|x − 1|), and g : (0,∞) → R defined by g(x) = log x. It is clearly that (f, g) is not
type I with any η(x, x̄) at x̄ = 1, because f is not differentiable at x̄ = 1. However, let
h(t) = t and ϕ(α) = α3, then, we can verify that (f, g) is (h, ϕ)-type I with any η(x, x̄) at
x̄ = 1. In fact,

f1(x)[−]f1(1) = |x − 1|[−]0 = (|x − 1|3 − 0
) 1

3

� 0 =
(

0T η(x, 1)
)

h,ϕ
=

((∇∗f1(1)
)T

η(x, 1)
)

h,ϕ
,

∀x ∈ (0,∞).

Analogously, we can obtain that f2 fulfills condition (2.13) at x̄ = 1. On the other hand, we
have

(−1)[·]g(1) = ( − (log 1)3) 1
3 = 0 �

(
0T η(x, 1)

)

h,ϕ
=

((∇∗g(1)
)T

η(x, 1)
)

h,ϕ
,

∀x ∈ (0,∞).

Thus, it follows from Definition 2.2 that (fi, g), i = 1, 2, is (x, x3)-type I with respect to
any η at x̄ = 1.

3 Optimality criteria

In this section, we establish Kuhn-Tucker type sufficient optimality conditions for problem
(MOP)h,ϕ .

Theorem 3.1 Suppose that there exists a feasible solution x̄ for (MOP)h,ϕ and scalars λ̄i >

0, i = 1, 2, . . . , m, µ̄j � 0, j = 1, 2, . . . , p such that

( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)

⊕
( p⊕

j=1

µ̄j ⊗ ∇∗gj (x̄)
)

= 0, (3.1)

and

µ̄j [·]gj (x̄) = 0, j = 1, 2, . . . , p. (3.2)

If (fi, gj ) is (h, ϕ)-type I at x̄ with respect to same η, then x̄ is a Pareto efficient solution for
(MOP)h,ϕ .
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Proof Since (3.1) holds, by Lemma 2.2(7), for all x ∈ X we have

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x, x̄)
)

h,ϕ
[+]

(( m⊕

i=1

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
= 0. (3.3)

We proceed by contradiction. Suppose that x̄ is not a Pareto efficient solution of (MOP)h,ϕ .
Then there is a feasible solution x̂ of (MOP)h,ϕ and an index k such that

fk(x̂) < fk(x̄),

fi(x̂) � fi(x̄) for all i �= k.

Since λ̄i > 0, i = 1, 2, . . . , m, from Lemma 2.3 (a)–(b) we get

λ̄k[·]fk(x̂) < λ̄i[·]fi(x̄),

λ̄i[·]fi(x̂) � λ̄i[·]fi(x̄) for all i �= k.

It follows from Lemma 2.3(e) and Lemma 2.4 that

Big[
m∑

i=1

]
λ̄i[·]fi(x̂) <

[ m∑

i=1

]
λ̄i[·]fi(x̄),

[ m∑

i=1

]
λ̄i[·]fi(x̂)[−]

[ m∑

i=1

]
λ̄i[·]fi(x̄) < 0. (3.4)

By (h, ϕ)-type-I assumption, for above x̂ we have

fi(x̂)[−]fi(x̄) �
((∇∗fi(x̄)

)T
η(x̂, x̄)

)

h,ϕ
, i = 1, 2, . . . , m,

(−1)[·]gj (x̄) �
((∇∗gj (x̄)

)T
η(x̂, x̄)

)

h,ϕ
, j = 1, 2, . . . , p.

Since λ̄i > 0, µ̄j � 0, i = 1, 2, . . . , m and j = 1, 2, . . . , p, by Lemma 2.3 (a)–(b) and
Lemma 2.2 (i), we get

λ̄i[·]
(
fi(x̂)[−]fi(x̄)

)
� λ̄i[·]

((∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
,

(−1)[·](µ̄j [·]gj (x̄)
)

� µ̄j [·]
((∇∗gj (x̄)

)T
η(x̂, x̄)

)

h,ϕ
.

From Lemma 2.2(3) and (4), and noticing that (3.2) holds, we get

λ̄i[·]fi(x̂)[−]λ̄i[·]fi(x̄) �
((

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
,

0 �
((

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x̂, x̄)
)

h,ϕ
,

By Lemma 2.3 (d), we have

[ m∑

i=1

]
(λ̄i[·]fi(x̂)[−]λ̄i[·]fi(x̄)) �

[ m∑

i=1

]((
λ̄i ⊗ ∇∗fi(x̄)

)T
η(x̂, x̄)

)

h,ϕ
, (3.5)

0 �
[ p∑

j=1

]((
µ̄j ⊗ ∇∗gj (x̄)

)T
η(x̂, x̄)

)

h,ϕ
. (3.6)
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From Lemma 2.2(4) and (3.5), we get

[ m∑

i=1

]
λ̄i[·]fi(x̂)[−]

[ m∑

i=1

]
λ̄i[·]fi(x̄) �

[ m∑

i=1

]((
λ̄i ⊗ ∇∗fi(x̄)

)T
η(x̂, x̄)

)

h,ϕ
. (3.7)

From (3,7) and (3.6), by Lemma 2.2(7), it yields that

[ m∑

i=1

]
λ̄i[·]fi(x̂)[−]

[ m∑

i=1

]
λ̄i[·]fi(x̄) �

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
, (3.8)

0 �
(( m⊕

i=1

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x̂, x̄)
)

h,ϕ
. (3.9)

From (3.4) and (3.8), we get

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
< 0. (3.10)

From (3.9) and (3.10), by Lemma 2.3(e), we have

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
[+]

(( m⊕

i=1

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x̂, x̄)
)

h,ϕ
< 0,

which is a contradiction to (3.3).

Theorem 3.2 Suppose that there exists a feasible solution x̄ for (MOP)h,ϕ and scalars
λ̄i > 0, i = 1, 2, . . . , m, µ̄j � 0, j = 1, 2, . . . , p such that (3.1) and (3.2) hold. If

(λ̄i[·]fi,
[ p∑

j=1

]
µ̄j [·]gj ) is pseudo quasi (h, ϕ)-type I at x̄ with respect to same η, then x̄ is

a Pareto efficient solution for (MOP)h,ϕ .

Proof Since g(x̄) � 0 and (3.2) holds, by the pseudo quasi (h, ϕ)-type I hypothesis on
[ p∑

j=1

]
µ̄j [·]gj at x̄, for all x ∈ X we get

((
∇∗([ p∑

j=1

]
µ̄j [·]gj (x̄)

))T

η(x, x̄)
)

h,ϕ
� 0.

By Lemma 2.1(4), we further get

(( m⊕

i=1

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x, x̄)
)

h,ϕ
� 0. (3.11)

Let x̄ not be a Pareto efficient solution for (MOP)h,ϕ . Then there exists a feasible x̂ for
(MOP)h,ϕ and an index k such that

fk(x̂) < fk(x̄),

fi(x̂) � fi(x̄) for all i �= k.
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By the same argument as in that of Theorem 3.1, we get

[ m∑

i=1

]
λ̄i[·]fi(x̂) <

[ m∑

i=1

]
λ̄i[·]fi(x̄).

By the pseudo quasi (h, ϕ)-type I hypothesis on λ̄i[·]fi at x̄, for above x̂, we get

[ m∑

i=1

]((∇∗(λ̄i[·]fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
< 0

It follows from Lemma 2.2(7) that

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
< 0. (3.12)

By Lemma 2.3(e), it follows from (3.11) and (3.12) that

(( m⊕

i=1

λ̄i ⊗ ∇∗fi(x̄)
)T

η(x̂, x̄)
)

h,ϕ
[+]

(( m⊕

i=1

µ̄j ⊗ ∇∗gj (x̄)
)T

η(x̂, x̄)
)

h,ϕ
< 0.

But this is a contradiction to (3.1). The proof is completed.

4 Duality results

Now in relation to (MOP)h,ϕ we consider the following dual problem:

(DMOP)h,ϕ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f (y) = (f1(y), f2(y), . . . , fm(y))T

s.t.
( m⊕

i=1
λi ⊗ ∇∗fi(y)

)
⊕

( p⊕

j=1
µj ⊗ ∇∗gj (y)

)
= 0

[ p∑

j=1

]
µj [·]gj (y) � 0,

λ > 0, λ = (λ1, λ2, · · · , λm)T

µ � 0, µ = (µ1, µ, · · · , µp)T

y ∈ X.

In this section, we provide weak and converse duality relations between problems (MOP)h,ϕ

and (DMOP)h,ϕ .

Theorem 4.1 (Weak Duality) Let x and (y, λ, µ) be any feasible solutions for (MOP)h,ϕ

and (DMOP)h,ϕ , respectively. Let either (I) or (II) below hold:

(a) (fi, gj ) is (h, ϕ)-type I at y with respect to same η;

(b) (λi[·]fi,
[ p∑

j=1

]
µj [·]gj ) is pseudo quasi (h, ϕ)-type I at y with respect to same η.

Then

f (x) � f (y).
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Proof Since (y, λ, µ) is feasible solution for (DMOP)h,ϕ , by Lemma 2.2(7) and Lemma
2.3 (c), for all x′ ∈ X we have

(( m⊕

i=1

λi ⊗ ∇∗fi(y)
)T

η(x′, y)
)

h,ϕ
[+]

(( m⊕

i=1

µj ⊗ ∇∗gj (y)
)T

η(x′, y)
)

h,ϕ
= 0, (4.1)

and

(−1)[·]
[ p∑

j=1

]
µj [·]gj (y) � 0. (4.2)

We proceed by contradiction. Suppose that

f (x) ≤ f (y).

Then, there is exists an index k such that

fk(x) < fk(y),

fi(x) � fi(y) for all i �= k.

By condition (I), with the same argument as that of Theorem 3.1, we can get

(( m⊕

i=1

λi ⊗ ∇∗fi(y)
)T

η(x, y)
)

h,ϕ
< 0,

and
(( m⊕

i=1

µj ⊗ ∇∗gj (y)
)T

η(x, y)
)

h,ϕ
� 0.

The above two inequalities give

(( m⊕

i=1

λi ⊗ ∇∗fi(y)
)T

η(x, y)
)

h,ϕ
[+]

(( m⊕

i=1

µj ⊗ ∇∗gj (y)
)T

η(x, y)
)

h,ϕ
< 0. (4.3)

which contradicts (4.1).
By condition (II), noticing that (4.2) holds, with the similar argument as that of Theorem

3.2, we can get

(( m⊕

i=1

µj ⊗ ∇∗gj (y)
)T

η(x, y)
)

h,ϕ
� 0,

and
(( m⊕

i=1

λi ⊗ ∇∗fi(y)
)T

η(x, y)
)

h,ϕ
< 0.

The above two inequalities imply (4.3), again a contradiction to (4.1). This completes the
proof.

Theorem 4.2 Suppose that there exist feasible solutions x̄ and (ȳ, λ̄, µ̄) for (MOP)h,ϕ and
(DMOP)h,ϕ , respectively, such that

fi(x̄) = fi(ȳ), i = 1, 2, . . . , m. (4.4)
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Moreover, we assume that the hypotheses of Theorem 4.1 hold at ȳ, then x̄ is a Pareto efficient
solution for (MOP)h,ϕ .

Proof For any feasible solution x for (MOP)h,ϕ , we get from Theorem 4.1 that

f (x) � f (ȳ). (4.5)

Suppose that x̄ is not a Pareto efficient solution for (MOP)h,ϕ . Then, there exist a feasible
solution x̂ for (MOP)h,ϕ and an index k such that

fk(x̂) < fk(x̄),

fi(x̂) � fi(x̄) for all i �= k.

Using condition (4.4), we get

fk(x̂) < fk(ȳ),

fi(x̂) � fi(ȳ) for all i �= k.

This contradicts (4.5). �

Theorem 4.3 (Converse Duality) Let (y, λ, µ) be a Pareto efficient solution for (DMOP)h,ϕ .
Moreover, we assume that the hypotheses of Theorem 4.1 hold at y, then y is a Pareto efficient
solution for (MOP)h,ϕ .

Proof We proceed by contradiction. Suppose that y is not a Pareto efficient solution for
(MOP)h,ϕ , that is, there exist x ∈ F and an index k such that

fk(x) < fk(y),

fi(x) � fi(y) for all i �= k.

If any one of the hypotheses of Theorem 4.1 holds, it yields in light of Theorem 4.1 that (4.3)
is satisfied. This leads to the similar contradiction as in the proof of Theorem 4.1.

5 Conclusions

This paper introduced the concepts of (h, ϕ)-type I and generalized (h, ϕ)-type I functions
in the setting of Ben-tal’ generalized algebraic means, and then, these functions are used to
establish some sufficient optimality conditions and dual results for a constrained multiobjec-
tive programming. Some researchers have paid attention on mathematical problems under the
Ben-tal’ generalized algebraic operations, for example: Ben-tal [10] have been applied it to
the problems in statistical decision theory, more recently, Xu and Liu [12,13] deal with math-
ematical programming in the (h, ϕ)-differentiable case, Zhang [14] and Yuan et al. [15] were
concerned on the (h, ϕ)-generalized directional derivative. Hence, for this purpose, we may
conclude that this paper enriched optimization theory in the view of mathematics. Although
the results in forms are similar to those of literatures [1,2,4], there are some differences in
applications. Let us see the following example:

Example 5 Considering the following multi-objective programming:

(P1)

⎧
⎨

⎩

min f (x) = (|x − 1|,√|x − 1|)T

s.t. g(x) = log x � 0
x ∈ (0,∞).
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It is obviously that x̄ = 1 is the optimal solution (is also the Pareto efficient solution) of
(P1). Since f is not differentiable at x̄ = 1, (f, g) is not type I or generalized type I with
respect any η at x̄ = 1. Thus, some conclusions in the literatures [1,2,4] are not suitable for
problem (P1), for example: Theorem 2.3 of Ref. [1], Theorem 4.1 of Ref. [2] and Theorem
3.1 of Ref. [4]. However, in the setting of Ben-tal’ generalized algebraic operations, the above
mentioned problem can be solved by using suitable h and ϕ. For example: Let h(t) = t and
ϕ(α) = α3, then we can verify that (f, g) is (h, ϕ)-type I with respect to any η at x̄ = 1, and
for all λ̄ = (λ̄1, λ̄2) > 0 and µ̄ � 0, the conditions (3.1) and (3.2) are fulfilled. Consequently,
Theorem 3.1 in present paper can be used to problem (P1).
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